

LAB MASTER LGD5000 SERIES

5.0 Purity Two Stage Nickel Plated **Brass Barstock Diaphragm Differential Autochange Gas Control Panel**

The Lab Master LGD5000 series two stage differential autochange control panels are designed for primary pressure gas control of non-corrosive or toxic, high purity gases up to grade 5.0 purity (99.999%), on gas distribution systems where constant delivery pressure is required.

- LGD5041 Series | Two Stage Twin Cylinder Diaphragm Differential Autochange Gas Control Panel, FKM Seal, FKM Pressure Relief Valve
- LGD5042 Series | Two Stage Twin Cylinder Diaphragm Differential Autochange Gas Control Panel, EPDM Seal, EPDM Pressure Relief Valve

FEATURES

High pressure isolation valves

High pressure purge facility

Two stage pressure regulation

Process line isolation valve

Encapsulated seat design

Twin cylinder configuration

MATERIALS

Body	Nickel Plated Brass Barstock			
Bonnet	High Strength Alloy			
Diaphragm	316L Stainless Steel			
Seal	PTFE			
Seat	Polyamide (Nylon®)			
Filter	10 Micron 316L Stainless Steel			

^{*} Subject to cylinder connection. **** Subject to final configuration.

SPECIFICATION

Maximum Inlet Pressure	60 bar (870 PSI) / 300 bar (4350 PSI)*
Delivery Pressure Range	3.5 bar (50 PSI) / 6 bar (90 PSI) / 10 bar (150 PSI)
Gauge	50mm (2") Diameter
Ports	1/4" NPT Female
Temperature Range	-20° C to +60° C (-4° F to +140° F)
Flow Coefficient (Cv)	0.078
Weight	8 NOka (17 64 lhs)****

FLOW PERFORMANCE

12 0-10bar 10 0-6bar 0-3.5ba Outlet Pressure (bar) 8 6 4 2 0 0 10 15 FLOW (m3/H) Air

300 bar Inlet Pressure @ 21°C

PROCESS & INSTRUMENTATION

- Isolation Valve (Closed)

- Isolation Valve

Adjustable Pressure Regulator with Pressure Relief Valve

- Fixed Pressure Regulator with P 1 Pressure Gauge

—№ - P2 Pressure Gauge

- Pressure Relief Valve
- Denotes a Configurable Option

- Adjustable Pressure Regulator with P 1 Pressure Gauge and Pressure Relief Valve

Model No. Selector Guide										
Product Type	Inlet Pressure	Outlet Pressure	Inlet Pressure Gauge	Outlet Pressure Gauge	Inlet Connection	Outlet Connection	Options			
LGD5041	02 60 bar / 870 PSI	03 -1 - 3.5 bar / 50 PSIG	00 No Gauge Fitted	00 No Gauge Fitted	000 No Inlet Fitted	00 No Outlet Fitted	A No Options Selected			
LGD5042	04 300 bar / 4350 PSI	04 -1 - 6 bar / 90 PSIG	01 bar/PSI	01 bar/PSI	001 1/8 Stainless Steel Compression	01 1/8 Stainless Steel Compression	K Certificate of Conformity			
		05 -1 - 10 bar / 150 PSIG	02 bar/PSI Contact Gauge		002 1/4 Stainless Steel Compression	02 1/4 Stainless Steel Compression	M CO2 Burst Disc			
					003 6mm Stainless Steel Compression	03 6mm Stainless Steel Compression	P Calibration / Pressure Test Certificate			
					004 1/4 NPT Male	04 1/4 NPT Male	R Fitted Pipeline Pressure Relief Valve, FKM Seal			
					007 G3/8 BSP R/H Brass Male	06 G1/2 BSP R/H Brass Male	S Fitted Pipeline Pressure Relief Valve, EPDM Seal			
					008 G3/8 BSP L/H Brass Male	07 G3/8 BSP R/H Brass Male	X Special Instruction			
						08 G3/8 BSP L/H Brass Male				